
Canonical Backlund transformations and new solutions of some field equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L877

(http://iopscience.iop.org/0305-4470/23/17/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) L877-L880. Printed in the U K  

LEITER TO THE EDITOR 

Canonical Backlund transformations and new solutions of some 
field equations 

Wenhua Hai 
Editorial Office, Journal of Hunan Educational Institute, Changsha 410012, Hunan, 
People's Republic of China 

Received 15 June 1990 

Abstract. Let the Hamiltonian of the field cp be H .  It is shown that the canonical transforma- 
tion g:(cpl, r1)-(cp2, r2) leads to a BIcklund transformation H(cpl, n , ) = H * ( c p , ,  rz) 
and the latter gives some new solutions for the equations a,a,cp =dE;(cp)/dp, i = 1, 2,. . . . 

The canonical transformations in classical mechanics have important meaning for 
solving the equations of motion [l]. This fact prompts us to study the problem of 
solving field equations using the method of canonical transformations. 

In a previous paper [2], we established the general theory of canonical transforma- 
tions of fields, and discussed the simple applications of the theory. In the present 
letter, we further study the applications of the theory, and obtain some quite interesting 
results. We feel that the canonical transformations are very important in field theory, 
as they are in mechanics. 

Let T*M be a w2"-dimensional cotangent bundle with the coordinates [cp(x), ~ ( x ) ] ,  
and R x T*M be a (a2" + 1)-dimensional extended phase space of fields cp with 
parameters t E R. We have defined the canonical variational 2-form 

f(cp, T) = d"x &T A Zcp (1) I 
and obtained the condition of canonical transformation g: ( c p l ,  .rr1)++(cp2, r2) as 

on the manifold T*M [2]. 
?(VI ,  T I )  = f(cp2, V2) 

f(cp,.rr)=j(cp,.rr)-~H(cp,.rr)A~? (3)  

f b l ,  VI) = i 7 c p 2 ,  .rrJ 

iG ,  = d"x(.rr,Sd,- .rr,~cp,)-[H(cp,,  .rr,)-H*(cp2, T,)]& ( 5 )  

(2) 

On the new manifold R x T*M,  we should have the extended canonical 2-form 

as in the case of the differential form [3]. We can easily prove that the condition (2) 
of the canonical transformation becomes 

in this case. The corresponding conditions of the 1-form may be written as 
(4) 

( 6 )  

I 
I 

s"c, = d " x ( c p l k  - cp2& + [H(cp1, .rrJ - H*(cp2, .rrJIgf 

&= d"x(.rrI~cp1+cp2~.rr2)-[H(cp1, .rr,)-H*(cp,, T~)I& (7) 

(8) 
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since Z2Gi = 0, where Gi ( i  = 1,2,3,4)  denote the generating functional of the field’s 
canonical transformations. From (5)-(8) we see that 

which are called the equations of the field’s canonical transformation. 

corresponding equation of the field’s canonical transformation gives 
Let us consider the case in which Gi is not an explicit function of time t. The 

H(cpl, T I )  = H*(cp2, = 2 ) .  (13) 

Equation (13) is defined as the canonical Backlund transformation (CBT) between 
the equations acpl/at = GH/Sr l ,  a r , / a t  = -GH/Scp, and acp2/at = 6H*/6r2,  a ~ , / a t  = 
-6H*/6cp2. By applying the CBT (13), we can obtain many interesting results. 

As an example, we consider the CBT between two of the equations 

(a$, -alal)cp = dF,(cp)/dp i = 1,2, . . . (14) 
where for brevity we have used the notation 8, = a/ax,, j = 1, 2, n, . . . , a, = a, = a/ax,. 
Here, and throughout, we use the summation convention: a Greek index runs from 0 
to n and any other index runs from 1 to n - 1 or any other number. We know the 
Hamiltonian of equations (14) as 

H = d”x[$a,cpa,cp + F,(cp)]. I 
This and equation (13)  imply the cBr of equation (14) in the form 

~ , P I ~ & I  -ap(P2dpQ2 = ~ ~ ( C P I  V2)am(Vi - (P2) = 2[Fz((P2) - ~ ( C P I ) ] .  

If we can change the right-hand side of (16) into 

2[F,(cp2) - F,(cpl)l = J ( c p 1 +  cp2)”6(cpI - 472) 

then from (16) we can obtain some formulae of nonlinear superposition 

where 

y1 = AT1( aixi - Dl t )  A I  = (aiai + D:)1’2 

7 2  = (XiXj + t2)”2 

y4 = [xixi +(axj - bt)2]’/2 i#j a 2 + b 2 =  1 

y3 = A;’(=- Dt) A2 = ( 1  + D2)1’2 

and so on. Some obvious examples will now be considered. 
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CBT of the  Klein-Gordon equation. For this case, from (14) we have [4] 

F(cp1) =M F(cp2) = fd 
f ( c p 1  + cpd = i(cpl+ 9 2 )  f(cp1- cpz) = i(cp1- c p 2 )  

in (16) and (17). Applying (20) to (18), we arrive at 

Mcpl+ $4 Wcp, - 9 2 )  = In cp3 In cp4 = -r’k k = 1,2, . . . (21) 

where cp3 = cpl + cp2  and cp4 = cpl - cp2 are also solutions of the Klein-Gordon equation, 
since the equation is linear. Here we have taken the integral constants as zero. 

Given (21), we can, from a solution c p 3 ,  obtain another new solution cp4. For 
example, inserting the plane wave solution cp3 = exp(*y,) into (21) yields the plane- 
spherical solution 

cp4 = exp(+ y’k/ rl) k =2 ,3 , .  . . . (22) 

CBT between the Liouville equation and the D’Alembert equation. This case implies that 

f l ( cp1)  = evl  

fl(cpl + c p z )  = i J z  ei(pl+m2) 

c e - h l + v  ) -4(v1-v2j = c e-(Pl = 

FZ(cp2) = 0 
(23) 

f,(cp, - p2) = iJz et(pl-vJ. 

Therefore equation (18) gives 

( Yk - YkO) ( YLO - Y k )  = R’k (no sum on k )  (24) z e  

that is 

c p 1 = h l  C -2 lnRk  (25) 
where RE= (yLo- Y k ) ( Y k - Y k O ) ,  C, yko and yio denote the integral constants. It is 
interesting that the solution cp2  of the D’Alembert equation is eliminated voluntarily 
and the canonical transformation between cpl and c p z  is not explicit. 

CBT of the Liouville equation. Taking Fl(cpl) =‘ev!, F1(cp2) = ev2, this leads (16) to the 
CBT of the Liouville equation. Then from (17) we have 

h(ql + c p z )  = -ef(vl+VJ 

f3(cp1 - c p 2 )  = 2[e-4(~1-v2) - e-t(pi-v,) ] = 4 sinh[$(cp, - 441. (261 

Using (18)-(26) yields the formulae of nonlinear superposition 

(27) 

between two solutions of the Liouville equation. Applying (24) to (27) gives the equation 
of (p2 as 

These are some new and complicated solutions to the Liouville equation. 
Comparing the above results with the general Backlund transformation for the 

Liouville equation [ 5 ,  61, we find that the CBT is a new and simple method for solving 
the equation. 
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CET of the sinh-Gordon equation. Let us set F3((p1) = cosh cpl, F3(cp2) = cosh (p2 .  Then 
(14) becomes the sinh-Gordon equation and equation (17) implies 

( P i + Q 2  
f4( 'pl + (p2) = i 2 sinh - 

2 

(P1- (P2 
f4( cpl - (p2)  = i 2 sinh - 

2 

since 

(P1+ (P2 sinh cp1- (P2 

2 ,  
2[ F (  p2) - F( (P,) = 2(cosh qr -cosh (P,) = -sinh ___ 

2 

By substituting (29) into (28), one arrives at 

The Klein-Gordon equation, Liouville equation and sinh-Gordon equation are 
very important in physics so that the formulae (21), (27) and (30) of nonlinear 
superposition for the solutions of these equations will be useful. 

We will discuss the canonical Backlund transformations of the sine-Gordon, 
Korteweg-de Vries, nonlinear Schrodinger and some other soliton equations in future 
publications. 
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